Publications Jong, A. et al., 2021. Antimicrobial susceptibility monitoring of Mycoplasma hyopneumoniae isolated from seven European countries during 2015 - 2016. VETERINARY MICROBIOLOGY, 253.
2.Grózner, D. et al., 2021. Multilocus sequence typing of the goose pathogen Mycoplasma anserisalpingitidis. VETERINARY MICROBIOLOGY, 254.
3.Bekő, K. et al., 2020. Mutations potentially associated with decreased susceptibility to fluoroquinolones, macrolides and lincomycin in Mycoplasma synoviae. VETERINARY MICROBIOLOGY, 248.
4.Bekő, K. et al., 2020. Development of molecular assays for the rapid and cost-effective determination of fluoroquinolone, macrolide and lincosamide susceptibility of Mycoplasma synoviae isolates. PLOS ONE, 15(10).
5.Bekő, K. & Gyuranecz, M., 2020a. Baromfiállományok Mycoplasma gallisepticum okozta fertőzései. MAGYAR ÁLLATORVOSOK LAPJA, 142(6), pp.349–364.
6.Bekő, K. et al., 2020. Development of mismatch amplification mutation assay (MAMA) for the rapid differentiation of Mycoplasma gallisepticum K vaccine strain from field isolates. AVIAN PATHOLOGY, 49(4), pp.317–324.
7.Bekő, K. & Gyuranecz, M., 2020b. Mycoplasma synoviae okozta baromfibetegségek. MAGYAR ÁLLATORVOSOK LAPJA, 142(1), pp.17–28. Jong, A. et al., 2020. Minimal inhibitory concentration of seven antimicrobials to Mycoplasma gallisepticum and Mycoplasma synoviae isolates from six European countries. AVIAN PATHOLOGY, pp.1–28.
9.Dobos, A. et al., 2020. Serological screening for Coxiella burnetii in the context of early pregnancy loss in dairy cows. ACTA VETERINARIA HUNGARICA.
10.Dobos, A. et al., 2020. A Coxiella burnetii előfordulásának aránya a magzatburok-visszatartásban, tejelő szarvasmarha-állományokban. MAGYAR ÁLLATORVOSOK LAPJA, 142(10), pp.593–597.
11.Dobos, A. et al., 2020. Prevalence of Coxiella burnetii in Central and Eastern European dairy herds. COMPARATIVE IMMUNOLOGY MICROBIOLOGY AND INFECTIOUS DISEASES, 72.
12.Felde, O. et al., 2020. Development of molecular biological tools for the rapid determination of antibiotic susceptibility of Mycoplasma hyopneumoniae isolates. VETERINARY MICROBIOLOGY, 245(5).
13.Földi, D. et al., 2020. Sertések Mycoplasma hyorhinis okozta megbetegedése. MAGYAR ÁLLATORVOSOK LAPJA, 142(9), pp.515–524.
14.Földi, D. et al., 2020. Genotyping Mycoplasma hyorhinis by multi-locus sequence typing and multiple-locus variable-number tandem-repeat analysis. VETERINARY MICROBIOLOGY, 249.
15.Gyuranecz, M. et al., 2020. Isolation of Mycoplasma anserisalpingitidis from swan goose (Anser cygnoides) in China. BMC VETERINARY RESEARCH, 16(1).
16.Hemati, M. et al., 2020. A Serological and Molecular Study on Francisella tularensis in Rodents in Hamadan Province, Western Iran. COMPARATIVE IMMUNOLOGY MICROBIOLOGY AND INFECTIOUS DISEASES, 68.
17.Hornok, S. et al., 2020. Broad Range Screening of Vector-Borne Pathogens in Arctic Foxes (Vulpes lagopus) in Iceland. ANIMALS, 10(11), p.2031.
18.Hornok, S. et al., 2020. Anaplasmataceae closely related to Ehrlichia chaffeensis and Neorickettsia helminthoeca from birds in Central Europe, Hungary. ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 113, pp.1067–1073.
19.Kovács, Á.B. et al., 2020. The core genome multi-locus sequence typing of Mycoplasma anserisalpingitidis. BMC GENOMICS, 21(1).
20.Matucci, A. et al., 2020. Molecular Differentiation of Mycoplasma gallisepticum Outbreaks: A Last Decade Study on Italian Farms Using GTS and MLST. VACCINES (BASEL), 8(4).
21.Morrow, C. et al., 2020. Antimicrobial susceptibility of pathogenic mycoplasmas in chickens in Asia. VETERINARY MICROBIOLOGY, 250(11).
22.Myrtennäs, K. et al., 2020. Genetic Traces of the Francisella tularensis Colonization of Spain, 1998–2020. MICROORGANISMS, 8(11).
23.ter Veen, C. et al., 2020. Decrease of Mycoplasma gallisepticum seroprevalence in Dutch commercial poultry and introduction of new genotypes during the years 2001–2018. AVIAN PATHOLOGY.
24.Volokhov, D. et al., 2020. Mycoplasma anserisalpingitidis sp. nov., isolated from European domestic geese (Anser anser domesticus) with reproductive pathology. INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, 70(4), pp.2369–2381.
25.Bekő, K. et al., 2019. Genotyping Mycoplasma gallisepticum by multilocus sequence typing. VETERINARY MICROBIOLOGY, 231, pp.191–196.
26.Bekő, K. et al., 2019. Antibiotic susceptibility profiles of Mycoplasma hyorhinis strains isolated from swine in Hungary. VETERINARY MICROBIOLOGY, 228, pp.196–201.
27.Grózner, D. & Gyuranecz, M., 2019. Kacsák és ludak Mycoplasma-fertőzései. MAGYAR ÁLLATORVOSOK LAPJA, 141(8), pp.495–504.
28.Grózner, D. et al., 2019. Complete Genome Sequences of Three Mycoplasma anserisalpingitis (Mycoplasma sp. 1220) Strains. MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 8(37).
29.Grózner, D. et al., 2019. Detection of Mycoplasma anatis, M. anseris, M. cloacale and Mycoplasma sp. 1220 in waterfowl using species-specific PCR assays. PLOS ONE, 14(7), p.e0219071.
30.Hornok, S. et al., 2019. Molecular detection of vector-borne bacteria in bat ticks (Acari: Ixodidae, Argasidae) from eight countries of the Old and New Worlds. PARASITES AND VECTORS, 12(1).
31.Juhász, J. et al., 2019. Brucella melitensis caused abortion in a serologically positive dromedary camel. JOURNAL OF CAMEL PRACTICE AND RESEARCH, 26(1), pp.1–9.
32.Klein, U. et al., 2019. New antimicrobial susceptibility data from monitoring of Mycoplasma bovis isolated in Europe. VETERINARY MICROBIOLOGY, 238.
33.Marosi, A. et al., 2019. Combination therapy of rabies-infected mice with inhibitors of pro-inflammatory host response, antiviral compounds and human rabies immunoglobulin. VACCINE, 37(33), pp.4724–4735.
34.Marosi, A. et al., 2019. Evaluation of in vitro inhibitory potential of type-I interferons and different antiviral compounds on rabies virus replication. VACCINE, 37(33), pp.4663–4672.
35.Nemes, C. et al., 2019. Mycoplasma iowae fertőzés előfordulása egy előnevelt pulykaállományban. MAGYAR ÁLLATORVOSOK LAPJA, 141(10), pp.589–596.
36.Posautz, A. et al., 2019. Tularemia - possible increase and new risk factors. INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 79(Supplement 1), pp.60–60.
37.Sulyok, K. M., et al., 2019. Development of Molecular Methods for the Rapid Differentiation of Mycoplasma gallisepticum Vaccine Strains from Field Isolates. JOURNAL OF CLINICAL MICROBIOLOGY, 57(6).
38.Csank, T. et al., 2018. A Serosurvey of Flavivirus Infection in Horses and Birds in Slovakia. VECTOR-BORNE AND ZOONOTIC DISEASES, 18(4), pp.206–213.
39.Dorko, E. et al., 2018. West Nile virus - a new infection in the Slovak Republic? CENTRAL EUROPEAN JOURNAL OF PUBLIC HEALTH, 26(88), pp.S51–S55.
40.Felde, O. et al., 2018. Genotyping Mycoplasma hyopneumoniae isolates based on multi-locus sequence typing, multiple-locus variable-number tandem repeat analysis and analysing gene p146. VETERINARY MICROBIOLOGY, 222, pp.85–90.
41.Felde, O. et al., 2018. A sertések Mycoplasma hyopneumoniae okozta tüdőgyulladása. MAGYAR ÁLLATORVOSOK LAPJA, 140(6), pp.337–348.
42.Felde, O. et al., 2018. Antibiotic susceptibility testing of Mycoplasma hyopneumoniae field isolates from Central Europe for fifteen antibiotics by microbroth dilution method. PLOS ONE, 13(12).
43.Grózner, D. et al., 2018. Complete genome sequences of Mycoplasma anatis, M. anseris and M. cloacale type strains. MICROBIOLOGY RESOURCE ANNOUNCEMENTS, 7(12).
44.Gyuranecz, M., 2018. Tularemia. In Manual of Diagnostic Tests and Vaccines for Terrestrial Animals 2018. pp. 675–682.
45.Hornok, S. et al., 2018. Assessing bat droppings and predatory bird pellets for vector-borne bacteria: molecular evidence of bat-associated Neorickettsia sp. in Europe. ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 111(9), pp.1707–1717.
46.Hornok, S. et al., 2018. Analyses of separate and concatenated cox1 and 18S rRNA gene sequences indicate that the bat piroplasm Babesia vesperuginis is phylogenetically close to Cytauxzoon felis and the “prototheilerid” Babesia conradae. ACTA VETERINARIA HUNGARICA, 66(1), pp.107–115.
47.Kreizinger, Z. et al., 2018. Genotyping Mycoplasma synoviae: Development of a multi-locus variable number of tandem-repeats analysis and comparison with current molecular typing methods. VETERINARY MICROBIOLOGY, 226, pp.41–49.
48.Posautz, A. et al., 2018. Seroprevalence of Francisella tularensis in Austrian Hunting Dogs. VECTOR-BORNE AND ZOONOTIC DISEASES, 18(2), pp.117–119.
49.Sulyok, K. et al., 2018. Development of molecular methods for the rapid detection of antibiotic susceptibility of Mycoplasma bovis. VETERINARY MICROBIOLOGY, 213(1), pp.47–57.
50.Flaisz B., et al., 2017. Babesia genotypes in Haemaphysalis concinna collected from birds in Hungary reflect phylogeographic connections with Siberia and the Far East. TICKS AND TICK-BORNE DISEASES, 8(4), pp.666–670.
51.Fodor, L. et al., 2017. Screening of Hungarian cattle herds for seropositivity to Mycoplasma bovis. ACTA VETERINARIA HUNGARICA, 65(2), pp.166–172.
52.Görföl-Sulyok, K. et al., 2017. Identification of markers related to antibiotic resistance and development of molecular methods for the detection of antibiotic susceptibility of Mycoplasma bovis. ACTA MICROBIOLOGICA ET IMMUNOLOGICA HUNGARICA, 64(Suppl. 1), pp.31–32.
53.Gyuranecz, M. & Horváth-Papp, I., 2017. A Mycoplasmosis és diagnosztikája. BAROMFI ÁGAZAT: BAROMFI- ÉS NYÚLTENYÉSZTŐK LAPJA, 17(1), pp.76–79.
54.Hornok, S. et al., 2017. Impact of a freeway on the dispersal of ticks and Ixodes ricinus-borne pathogens: forested resting areas may become Lyme disease hotspots. ACTA VETERINARIA HUNGARICA, 65(2), pp.242–252.
55.Kreizinger, Z. et al., 2017. Antibiotic susceptibility profiles of Mycoplasma synoviae strains originating from Central and Eastern Europe. BMC VETERINARY RESEARCH, 13.
56.Kreizinger, Z. et al., 2017. Development of mismatch amplification mutation assays for the differentiation of MS1 vaccine strain from wild-type Mycoplasma synoviae and MS-H vaccine strains. PLOS ONE, 12.
57.Kreizinger, Z. et al., 2017. Comparison of virulence of Francisella tularensis ssp. holarctica genotypes B.12 and B.FTNF002-00. BMC VETERINARY RESEARCH, 13.
58.Mostafavi, E. et al., 2017. A Field Study of Plague and Tularemia in Rodents, Western Iran. VECTOR-BORNE AND ZOONOTIC DISEASES, 17(4), pp.247–253.
59.Skultety, L. et al., 2017. Q Fever, pp.1–24.
60.Sulyok, K. et al., 2017. Hazai Mycoplasma bovis törzsek antibiotikum- érzékenységének vizsgálata (bővített másodközlés). MAGYAR ÁLLATORVOSOK LAPJA, 139(3), pp.169–179.
61.Sulyok, K. et al., 2017. Mutations Associated with Decreased Susceptibility to Seven Antimicrobial Families in Field and Laboratory-Derived Mycoplasma bovis Strains. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 61(2).
62.Wernery, U. et al., 2017. Laboratory investigations after eye drop immunisation of dromedaries with live attenuated Brucella melitensis Rev 1 vaccine. JOURNAL OF CAMEL PRACTICE AND RESEARCH, 24(1), pp.9–14.
63.Grózner, D. et al., 2016. Antibiotic susceptibility profiles of Mycoplasma sp. 1220 strains isolated from geese in Hungary. BMC VETERINARY RESEARCH, 12.
64.Gyuranecz, M. et al., 2016. Genotyping of Brucella melitensis strains from dromedary camels (Camelus dromedarius) from the United Arab Emirates with multiple-locus variable-number tandem repeat analysis. VETERINARY MICROBIOLOGY, 186, pp.8–12.
65.Kreizinger, Z. et al., 2016. Antimicrobial susceptibility of Bacillus anthracis strains from Hungary. ACTA VETERINARIA HUNGARICA, 64(2), pp.141–147.
66.Maurin, M. & Gyuranecz, M., 2016. Tularemia: clinical aspects in Europe. LANCET INFECTIOUS DISEASES, 16(1), pp.113–124.
67.Sándor, H. et al., 2016. Molecular screening of Anaplasmataceae in ticks and tsetse flies from Ethiopia. ACTA VETERINARIA HUNGARICA, 64(1), pp.65–70.
68.Rónai Z., et al., 2016. Molecular analysis and MIRU-VNTR typing of Mycobacterium avium subsp. avium, “hominissuis” and silvaticum strains of veterinary origin. INFECTION GENETICS AND EVOLUTION, 40, pp.192–199.
69.Bányai, K. et al., 2015. Unique genomic organization of a novel Avipoxvirus detected in turkey (Meleagris gallopavo). INFECTION GENETICS AND EVOLUTION, 35, pp.221–229.
70.Bencurova, E. et al., 2015. Deciphering the protein interaction in adhesion of Francisella tularensis subsp. holarctica to the endothelial cells. MICROBIAL PATHOGENESIS, 81, pp.6–15.
71.Hornok, S. et al., 2015. Screening of bat faeces for arthropod-borne apicomplexan protozoa: Babesia canis and Besnoitia besnoiti-like sequences from Chiroptera. PARASITES AND VECTORS, 8.
72.Kreizinger, Z. et al., 2015. Rapid, simple and cost-effective molecular method to differentiate the temperature sensitive (ts+) MS-H vaccine strain and wild-type Mycoplasma synoviae isolates. PLOS ONE, 10.
73.Kreizinger, Z. et al., 2015. Occurrence and significance of Coxiella burnetii and Chlamydiales in abortions of domestic ruminants and in wild ruminants in Hungary, Central Europe. JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION, 27(2), pp.206–210.
74.Kreizinger, Z. et al., 2015. Hazai Francisella tularensis ssp. holarctica törzsek antibiotikum-érzékenységének vizsgálata (másodközlés). MAGYAR ÁLLATORVOSOK LAPJA, 137(6), pp.377–383.
75.Pourhossein, B. et al., 2015. Tularemia and Plague Survey in Rodents in Earthquake Zones in Southeastern Iran. EPIDEMIOLOGY AND HEALTH, 37.
76.Rónai, Z. et al., 2015. Molecular analysis and MIRU-VNTR typing of Mycobacterium avium subsp. paratuberculosis strains from various sources. JOURNAL OF APPLIED MICROBIOLOGY, 118(2), pp.275–283.
77.Rónai, Z. et al., 2015. First isolation and characterization of Brucella microti from wild boar. BMC VETERINARY RESEARCH, 11.
78.Zsuzsa, K. et al., 2015. Complement sensitivity and factor H binding of European Francisella tularensis ssp. holarctica strains in selected animal species. ACTA VETERINARIA HUNGARICA, 63(3), pp.275–284.
79.Birdsell, D. et al., 2014. Francisella tularensis subsp. tularensis A.I phylogeography in the United States. EMERGING INFECTIOUS DISEASES, 20, pp.861–865.
80.Gyuranecz, M. et al., 2014. Q fever epidemic in Hungary, April to July 2013. EUROSURVEILLANCE, 19(30).
81.Gyuranecz, M., 2014. Francisella tularensis. In Encyclopedia of food safety. pp. 442–445.
82.Kreizinger, Z. et al., 2014. Genetic relatedness of Brucella suis biovar 2 isolates from hares, wild boars and domestic pigs. VETERINARY MICROBIOLOGY, 172(3–4), pp.492–498.
83.Sándor, H. et al., 2014. Influence of the biotope on the tick infestation of cattle and on the tick-borne pathogen repertoire of cattle ticks in Ethiopia. PLOS ONE, 9(9).
84.Sulyok, K. et al., 2014. Identification of novel Coxiella burnetii genotypes from Ethiopian ticks. PLOS ONE, 9(11).
85.Sulyok, K. et al., 2014. Antibiotic susceptibility profiles of Mycoplasma bovis strains isolated from cattle in Hungary Central Europe. BMC VETERINARY RESEARCH, 10.
86.Sulyok, K. et al., 2014. Genotyping of Coxiella burnetii from domestic ruminants and human in Hungary: indication of various genotypes. BMC VETERINARY RESEARCH, 10.
87.Sulyok, K. et al., 2014. Phylogeny of Mycoplasma bovis isolates from Hungary based on multi locus sequence typing and multiple-locus variable-number tandem repeat analysis. BMC VETERINARY RESEARCH, 10.
88.Szigeti, A. et al., 2014. Detection of Francisella-like endosymbiont in Hyalomma rufipes from Ethiopia. TICKS AND TICK-BORNE DISEASES, 5, pp.818–820.
89.Gyuranecz, M. et al., 2013. Within-host evolution of Brucella canis during a canine brucellosis outbreak in a kennel. BMC VETERINARY RESEARCH, 9.
90.Gyuranecz, M. et al., 2013. Worldwide Phylogenetic Relationship of Avian Poxviruses. JOURNAL OF VIROLOGY, 87, pp.4938–4951.
91.Gyuranecz, M. et al., 2013. Natural IS711 insertion caused Omp31 gene suppression in Brucella ovis. JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION, 25(2), pp.234–238.
92.Hornok, S. et al., 2013. Synanthropic birds associated with high prevalence of tick-borne rickettsiae and with the first detection of Rickettsia aeschlimannii in Hungary. VECTOR-BORNE AND ZOONOTIC DISEASES, 13(2), pp.77–83.
93.Juma, A. et al., 2013. Serological investigation on Chlamydophila abortus infection in cattle from Albania. ALBANIAN JOURNAL OF AGRICULTURAL SCIENCES, 12(1), pp.99–102.
94.Kreizinger, Z. et al., 2013. Prevalence of Francisella tularensis and Francisella-like endosymbionts in the tick population of Hungary and the genetic variability of Francisella-like agents. VECTOR-BORNE AND ZOONOTIC DISEASES, 13, pp.160–163.
95.Kreizinger, Z. et al., 2013. Antimicrobial susceptibility of Francisella tularensis subsp. holarctica isolates from Hungary, Central Europe. JOURNAL OF ANTIMICROBIAL CHEMOTHERAPY, 68(2), pp.370–373.
96.Németh, V. et al., 2013. Serologic evidence of crimean-congo hemorrhagic Fever virus infection in hungary. VECTOR-BORNE AND ZOONOTIC DISEASES, 13(4), pp.270–272.
97.Pintér, R. et al., 2013. Identification of tick-borne encephalitis virus in ticks collected in southeastern Hungary. TICKS AND TICK-BORNE DISEASES, 4(5), pp.427–431.
98.Hornok, S. et al., 2013. Non-pet dogs as sentinels and potential synanthropic reservoirs of tick-borne and zoonotic bacteria. VETERINARY MICROBIOLOGY, 167(3–4), pp.700–703.
99.Birdsell, D. et al., 2012. Melt analysis of Mismatch Amplification Mutation Assays (Melt-MAMA): A functional study of a cost-effective SNP genotyping assay in bacterial models. PLOS ONE, 7(3).
100.Gyuranecz, M. et al., 2012. Factors Influencing Emergence of Tularemia, Hungary, 1984–2010. EMERGING INFECTIOUS DISEASES, 18(8), pp.1379–1381.
101.Gyuranecz, M. et al., 2012. Prevalence of Coxiella burnetii in Hungary: Screening of dairy cows, sheep, commercial milk samples, and ticks. VECTOR-BORNE AND ZOONOTIC DISEASES, 12(8), pp.650–653.
102.Gyuranecz, M., 2012. Tularemia. In Infectious Diseases of Wild Mammals and Birds in Europe. pp. 303–309.
103.Gyuranecz, M. et al., 2012. Phylogeography of Francisella tularensis subsp. holarctica, Europe. EMERGING INFECTIOUS DISEASES, 18(2), pp.290–293.
104.Hornok, S. et al., 2012. First detection of bartonellae in a broad range of bat ectoparasites. VETERINARY MICROBIOLOGY, 159(3–4), pp.541–543.
105.Chanturia, G. et al., 2011. Phylogeography of Francisella tularensis subspecies holarctica from the country Georgia. BMC MICROBIOLOGY, 11.
106.Gyuranecz, M., 2011. Epizootic investigations of tularemia and the comparative characterization of Francisella tularensis strains.
107.Gyuranecz, M. et al., 2011. A kutyák Brucella canis okozta megbetegedése Magyarországon. MAGYAR ÁLLATORVOSOK LAPJA, 133(8), pp.471–479.
108.Gyuranecz, M. et al., 2011. Investigation of the Ecology of Francisella tularensis During an Inter-Epizootic Period. VECTOR-BORNE AND ZOONOTIC DISEASES, 11(8), pp.1031–1035.
109.Gyuranecz, M. et al., 2011. Brucellosis of the European Brown Hare (Lepus europaeus). JOURNAL OF COMPARATIVE PATHOLOGY, 145(1), pp.1–5.
110.Gyuranecz, M. et al., 2011. Detection of Brucella canis-induced reproductive diseases in a kennel. JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION, 23(1), pp.143–147.
111.Rigó, K. et al., 2011. Detection of Borrelia burgdorferi sensu lato and Anaplasma phagocytophilum in small mammals and ectoparasites in Hungary. VECTOR-BORNE AND ZOONOTIC DISEASES, 11(11), pp.1499–1501.
112.Gyuranecz, M. et al., 2010. Susceptibility of the common hamster (Cricetus cricetus) to Francisella tularensis and its effect on the epizootiology of tularemia in an area where both are endemic. JOURNAL OF WILDLIFE DISEASES, 46(4), pp.1316–1320.
113.Gyuranecz, M. et al., 2010. A tularaemia járványtana, különös tekintettel a mezei nyúl (Lepus europaeus) fertőződésére. MAGYAR ÁLLATORVOSOK LAPJA, 132(1), pp.39–46.
114.Gyuranecz, M. et al., 2010. Tularemia of European brown hare (Lepus europaeus): a pathological, histopathological and immunhistochemical study. VETERINARY PATHOLOGY, 47(5), pp.958–963.
115.Gyuranecz, M. et al., 2010. Characterisation of Francisella tularensis strains, comparing their carbon source utilization. ZOONOSES AND PUBLIC HEALTH, 57(6), pp.417–422.
116.Gyuranecz, M. et al., 2009. Generalized tularemia in a velvet monkey (Chlorocebus aethiops) and a patas monkey (Erythrocebus patas) in a zoo. JOURNAL OF VETERINARY DIAGNOSTIC INVESTIGATION, 21, pp.384–387.
117.Jánosi, K. et al., 2009. Aerosol infection of calves with Histophilus somni. ACTA VETERINARIA HUNGARICA, 57(3), pp.347–356.
118.Jánosi, K. et al., 2009. First isolation of Histophilus somni from goats. VETERINARY MICROBIOLOGY, 133, pp.383–386.
119.Jánosi, K. et al., 2009. A tüdő kórbonctani és kórszövettani elváltozásai mesterséges Histophilus somni fertőzést követően borjakban. Pathological and histopathological findings in lungs following experimental infection of calves with Histophilus somni. MAGYAR ÁLLATORVOSOK LAPJA, 131(4), pp.202–209.
120.Gyuranecz, M., 2004. A pufók szerzetes. Egy hónap a Földközi-tengeri barátfókák nyomában. VADON MAGAZIN, 5, pp.10–11.